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We calculate the excitation spectra of a spin-polarized Hubbard chain away from half filling using a high-
precision momentum-resolved time-dependent density-matrix renormalization-group method. Focusing on the
U�0 case, we present in some detail the single-fermion, pair, density, and spin spectra and discuss how
spin-charge separation is altered for this system. The pair spectra show a quasicondensate at a nonzero
momentum proportional to the polarization, as expected for this Fulde-Ferrell-Larkin-Ovchinnikov-type
superfluid.
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Systems of interacting fermions obeying Fermi-liquid
theory exhibit a one-to-one correspondence between their
low-energy quasiparticle excitations and those of a noninter-
acting Fermi gas. The quasiparticles have renormalized en-
ergy and spectral weight but possess the same charge and
spin quantum numbers as the corresponding noninteracting
fermions. This scenario breaks down in one dimension: there
each Fermi surface reduces to two points in momentum
space, at k= �kF. This results in Fermi-surface nesting at all
densities and spin polarizations, converting the Fermi liquid
to a Luttinger liquid1–3 even for weak interaction.

In a Luttinger liquid with zero spin polarization, the el-
ementary excitations are collective density fluctuations that
carry only either spin �“spinons”� or charge �“holons”�.
These excitations have different dispersions and, obviously,
do not carry the same quantum numbers as the original
“bare” fermions. This leads to the spin-charge separation pic-
ture, in which a fermion injected into the system separates
�“fractionates”� into an �anti�holon and a spinon, each of
them carrying a share of the fermion’s quantum numbers.
The phenomenon of spin-charge separation and, more gener-
ally, fractionation of particles is an important and intriguing
concept in strongly correlated systems. Its signatures have
been observed experimentally in one-dimensional �1D� me-
tallic wires,4 carbon nanotubes,5 and nanowires in semicon-
ducting heterostructures.6 Proposals have been made to seek
for evidence of these phenomena in cold atomic gases.7,8

In the 1D Hubbard model, the low-energy spin and charge
modes of the Luttinger liquid decouple as long as the system
either is at half filling or has zero spin polarization. However,
if the system is away from half filling and has a nonzero
magnetization, the collective modes that constitute the el-
ementary low-lying excitations are linear combinations of
the spin and charge fields;9–12 so although one still has a
Luttinger liquid with fractionalized fermions, it is no longer
strictly a “spin-charge separation” scenario. The field-
theoretical formulation of the Luttinger liquid theory has
been proven very effective in describing the low-energy
physics of a variety of models. However, a fully quantitative
and general picture of how the spin and charge degrees of
freedom couple to form full-fledged fermions is still missing.

In this Rapid Communication, we study the negative-U
�attractive� 1D Hubbard model, away from half filling and at

nonzero spin polarization. This model can now be studied
experimentally with ultracold atoms in an optical lattice.13

The Hamiltonian is

H = − t�
i,�

�ci�
† ci+1� + H.c.� + U�

i

ni↑ni↓, �1�

where c��
† creates a fermion with spin �= ↑ ,↓ at site �, n��

=c��
† c��, t is the hopping matrix element, which we set to

unity �we also set the lattice spacing to unity�, and U is the
interaction strength that in this work will be considered nega-
tive �attractive�. The negative and positive U versions of this
model can be mapped exactly onto each other by the “ca-
nonical” transformation that applies a particle-hole and mo-
mentum change to one spin species. Thus our results are
general and can be translated to the positive-U case.14

For large negative U the fermions form tightly bound
pairs that behave as hard-core bosons.14 These bosons are
prevented from fully condensing in 1D by quantum fluctua-
tions. They form a “quasicondensate,” with pair correlations
that decay as a power law that in some regime of parameters
�large �U��4t� dominates the single-fermion correlations at
large distances.12,15,16 In the polarized case, the ground state
of this system is the 1D version of the Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� superfluid,16–18 in which the pairs
forming the quasicondensate have nonzero center of mass
momentum �Q with Q=kF↑−kF↓, where kF� is the Fermi
momentum of the fermions with spin �. This was confirmed
numerically in Ref. 19 and subsequent studies.20–22

The Luttinger-liquid and FFLO aspects of this system can
be heuristically understood as follows. At large negative U,
the spin-polarized ground state consists of empty sites �0’s�,
sites occupied by pairs �2’s�, and excess-up fermions �↑’s�,
with sites singly occupied by ↓’s being only “virtual” states.
The density of excess ↑’s is Q /�. An ↑ exchanges positions
with the 0’s and 2’s with hopping t and thus moves with
bandwidth 4t. At half filling, the background the ↑ moves
through is half 0’s and half 2’s, so the relative motion moves
spin but no density on average: this collective mode is then
purely a spinon. But away from half filling, the density of 0’s
differs from that of 2’s; so when an ↑ moves, it on average
moves some density as well as spin: this light �bandwidth 4t�
mode of the Luttinger liquid is then not purely spin but in-
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stead is a particular linear combination of spin and charge
�we will call this light mode “spinonlike”�. In the limits of
nearly complete polarization or either zero or complete fill-
ing, the ↑’s become just regular fermions carrying the full
charge and spin. This scenario has been confirmed numeri-
cally in Refs. 10, 23, and 24 by looking at the real-time
evolution of spin and charge distributions.

At large negative U the 2’s do not move freely past the
0’s; this exchange happens via a virtual intermediate un-
paired state with energy �U�, resulting in effective hopping
teff=−2t2 /U. Thus this motion of 2’s relative to 0’s consti-
tutes the heavy “holonlike” mode of the Luttinger liquid with
a smaller bandwidth. Also, when a 2 moves past an ↑, the
ground state has a sign change. This means the wave func-
tion of the quasicondensate of bosonic 2’s has a node at each
↑. If these nodes were equally spaced, this would be an
FFLO standing-wave condensate with momentum �Q.
However, the ↑’s actually form a 1D Luttinger liquid with
divergent position fluctuations so the momentum distribution
of the pairs instead has a power-law divergence at �Q; this
1D partially spin-polarized superfluid state should perhaps be
termed “quasi-FFLO.”

Hamiltonian �1� can be solved exactly by means of the
Bethe ansatz,25–27 and the dispersion of the elementary exci-
tations can be obtained.28–30 However, the actual Green’s
functions and spectral properties can only be calculated in
certain limits,31 and numerical methods have been crucial to
fill in the blanks and compare to experiments.32,33 In the
following, we use the time-dependent extension of the
density-matrix renormalization-group �tDMRG� �Refs. 34
and 35� method to obtain estimates for various Green’s func-
tions in real time and real space with unprecedented
accuracy.36 To extract the dynamical response of the system,
we calculate the correlators G�x−x� , t�− t�
= i�O�x� , t��O†�x , t��, where O is an operator of interest. The
Fourier transforming then yields the corresponding spectral
weights as functions of momentum and frequency:34,36,37

I�k,�� = �
n

���n�Ok��0��2��� − En + E0� , �2�

where E0 is the ground-state energy and the sum runs over
all the eigenstates of the system with energy En. All the
results will be plotted using a logarithmic scale for the inten-
sity, with several orders of magnitude between the intensities
of the weakest and strongest features. At very small scales,
some ripples or oscillations appear as a consequence of the
numerical Fourier transform and the commensuration of the
lattice. These effects get amplified near zero momentum and
frequency.

In Figs. 1�a� and 1�b� we show the dynamic structure
factor for the charge and spin densities, respectively, for an
unpolarized Hubbard chain at quarter filling �in this paper we
always use L=80 and U=−8t�. The charge excitations dis-
play gapless modes at momenta k=0 and k= �2kF= �� /2
and a continuum ranging from �=0 to �� t=4teff. This
spectrum is formed primarily by holon-antiholon excitations.
It is qualitatively similar to the particle-hole spectrum of the
corresponding noninteracting system but with a reduced
bandwidth. However, this system is a superfluid with a spin

gap of �5t, as is seen in the spectral weight of the spin �Fig.
1�b�	; this is the energy “cost” of breaking a Cooper pair. The
spinon has bandwidth �4t, and the spectral weight of Sz
vanishes strongly as k→0 since the total spin is conserved
and the matrix element for making spin excitations thus van-
ishes at zero momentum.

The single-particle spectral weight for the quarter-filled
unpolarized system is shown in Fig. 1�c�, where we plot the
imaginary part of the one-particle Green’s function. The up-
per and lower features, for positive and negative frequencies,
correspond to the inverse photoemission spectra �IPES� and
photoemission spectra �PES�, resulting from adding or re-
moving a fermion, respectively. We have shifted the energies
relative to the chemical potential 	= �E0�N+1�−E0�N
−1�	 /2, which lies in the center of the spin gap. This gap is
due to the Cooper pairing: the ground state is a total spin
singlet with all fermions paired. The added fermion has no
“partner” to pair with, while removing a fermion requires
breaking an existing pair; so both processes are gapped.

Again, we can heuristically understand many features of
these spectra using the large-negative-U description dis-
cussed above. The unpolarized ground state is a quasicon-
densate of 2’s that form a Luttinger liquid of repulsively
interacting bosons. An added ↑ forms a spinon and much of
its spectral weight thus follows a spinon dispersion with
bandwidth 4t. Since the wave function changes sign when
the ↑ exchanges position with a 2, the lowest-energy spinon
states are at the momenta �� /4 set by the density of the 2’s.
However, the added fermion may also excite holon modes,
and a careful look at the upper part of Fig. 1�c� reveals a
continuum, with a weaker feature at the lower edge of the
continuum which has a holonlike dispersion. This continuum
arises when part of the added momentum is used to excite
holon modes of the quasicondensate.

Removing a fermion requires breaking a pair �a 2�, and
this process apparently couples more strongly to the holon

FIG. 1. �Color online� Dynamical structure factors of the �a�
“charge” density n�k ,�� and �b� spin Sz�k ,�� for an unpolarized
quarter-filled Hubbard chain with U=−8t. �c� Spectral weights for
adding ���	� or removing ���	� a fermion for the same system;
	 is the chemical potential. Frequencies are in units of the hopping
t=1. The colors are set by the logarithm of the spectral intensity.
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degrees of freedom, as can be seen by the flatter dispersion
of the strong part of the spectrum at low momentum in the
bottom part of Fig. 1�c�. However, at higher momentum, this
PES spectrum, although much weaker, has a continuum with
a mostly spinonlike dispersion. Here the process apparently
removes a low-momentum pair from the quasicondensate
and makes a spinon, with the spinon taking most of the mo-
mentum. At half filling, there is particle-hole symmetry and
the PES and IPES spectra are thus equivalent, both contain-
ing strong spinon and holon signals.32

We now turn our attention to the single-fermion spectrum
in the polarized case, shown in Fig. 2, where we took N↑
−N↓=8. Since the system is no longer symmetric under time
reversal, the spectral functions for the up and down fermions
are different. Correspondingly, we can determine the chemi-
cal potential of each species: 	�= �E�N�+1�−E�N�−1�	 /2.
The average chemical potential is 	= �	↑+	↓� /2, while the
effective Zeeman field is h= �	↑−	↓� /2. We find it instruc-
tive to plot the spectra with energies relative to 	. Note that
	 is still in the “pairing” gap, but now 	↑ is in the band
above the gap, while 	↓ is in the band below the gap.

At this fairly large �U�, we can describe this system as a
quasicondensate of bosonic 2’s with density kF↓ /�=1 /5 and
momentum �Q= �� /10 plus a density Q /�=1 /10 of ex-
cess unpaired ↑’s. The 2’s are bound pairs and sit below the
gap and just below 	↓. In the PES spectrum one can remove
a fermion of either spin from one of these singlet pairs; these
are the strong low-momentum features near �−	�−3. The
weaker bands dispersing strongly to lower energy from these
features arise from removing one member of a pair and leav-
ing the other member in a spinonlike state.

The excess unpaired ↑’s lie at energy just below 	↑ and
can be seen there in the spin-up PES spectrum. The wave
functions of the ↑’s change sign on passing each 2; as a result
the lowest-energy states of the corresponding spinonlike
modes are at �kF↓; it is near these momenta where the up

PES intensity is largest. The strongest bands in the up spec-
trum cross 	↑ at �kF↑, just as in the noninteracting system.
But one can also see weaker bands crossing 	↑ at ��2kF↓
−kF↑�, which correspond to three-particle excitations in the
noninteracting system. At low momentum and energies be-
low 	↑ there is a fairly flat holonlike dispersion of the up
spectral weight; presumably here the excitation also transfers
some momentum to the �heavy� pairs.

In the spin-down IPES spectrum, there is a heavy holon-
like band at energies just above 	↓. This arises from adding
a down fermion that pairs with one of the excess-up fermions
with momentum �k�
kF↑, resulting in a pair �a 2� which
carries most of the added momentum. This feature in the
IPES is strong only for �k��kF↓ since the down-spin states at
lower momentum than this are already occupied. This band
continues to the PES spectrum below 	↓, crossing the chemi-
cal potential at k= �kF↓, as in the noninteracting system. At
the zone boundary this holonlike band splits into two faint
features at ��−	� near −1 and −1.5 for reasons we do not
yet understand. In the PES spectrum there are also weaker
features approaching 	↓ at momenta ��2kF↑−kF↓�, which
again correspond to three-particle excitations in the noninter-
acting system.

In the IPES spectrum above the gap, we can see that for
both spins the added particle can excite a continuum of states
with both spinonlike and holonlike dispersions. The sharpest
feature is a spinon band, which is substantially sharper in the
up IPES than in the down. The general appearance of this
part of the IPES spectral weight is similar to that of the
unpolarized case in Fig. 1�c�.

In order to examine excitations from the quasicondensate,
we calculated the spectral weight of removing a pair bi
=ci↑ci↓, shown in Figs. 3�c� and 3�d�. For the unpolarized
case, the spectral weight is concentrated near zero energy
and zero momentum due to the zero-momentum quasicon-

FIG. 2. �Color online� “Photoemission” spectra for quarter-filled
spin-polarized Hubbard chain, with U=−8t, N↑=24, and N↓=16.
The energy scale has been chosen relative to the average chemical
potential 	= �	↑+	↓� /2. The Fermi levels for each spin species are
indicated by the horizontal lines �see text�.
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FIG. 3. �Color online� Dynamical structure factors of the �a�
charge density n�k ,�� and �b� spin lowering operator S−�k ,�� for
the polarized, quarter-filled Hubbard chain of Fig. 2. �c� Spectral
weight for removing a pair from the unpolarized system and �d� the
polarized system. In �c� and �d� the energy scale is relative to the
chemical potential of a pair 2	.
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densate. In the polarized case, the zero-energy spectral
weight of this quasicondensate splits into two features at k
= �Q= � �kF↑−kF↓�, as expected for this FFLO-type state.

In Fig. 3�a� we show the dynamical structure factor for
the density operator in the polarized case. One noteworthy
difference from the unpolarized case is the appearance of a
weak spinonlike feature. This occurs because in this polar-
ized system away from half filling, the spinonlike mode is no
longer purely spin so couples to the density.

Since time-reversal symmetry is broken by the spin polar-
ization, the response functions for the spin operators Sz, S+,
and S− are now all different. The structure factor for Sz �not
shown� exhibits, besides the excitations across the gap
present in the unpolarized system �Fig. 1�b�	, a gapless band
that originates from spin excitations within the bands that
cross the Fermi surfaces. The operator S+ flips spins up,
breaking pairs, so its spectrum only shows excitations across
the gap. The richest of these spin dynamical functions is
S−�k ,��, shown in Fig. 3�b�. The action of the operator S− on
the ground state can cause three possible outcomes that each
occupy a separate energy window: �1� it can break a pair, �2�
it can flip an unpaired ↑ to an unpaired ↓, making a gapless
spin fluctuation, or �3� the flipped spin can pair with another

unpaired ↑ and be absorbed by the quasicondensate. We find
that the spectral weight for this last process is very weak but
detectable; it is visible just below energy −4 in Fig. 3�b�. We
believe this very small weight is due to the product of two
small factors: the low probability �due to fermionic antisym-
metry� that two unpaired ↑’s are on adjacent lattice sites
before one of them is flipped down, and the low overlap
between the resulting state after flipping and the ground state
with a bound pair since the latter mostly consists of doubly-
occupied sites.

To summarize, we have reported and discussed the rich
features of the particle, pair, spin, and density spectral
weights for the quasi-FFLO superfluid ground state of a par-
tially spin-polarized fermionic Hubbard chain with attractive
interactions. We have found that a rigorous treatment, par-
ticularly to describe properties involving excitations, should
still rely on the Luttinger-liquid picture.
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